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ABSTRACT 

The series hybrid bearing couples a fluid-film bearing with a rolling- 

element bearing such that the rolling-element bearing inner race  runs at 

a fraction of shaft speed. A series-hybrid bearing was analyzed and ex- 

periments were run at thrust loads from 100 to 300 pounds and speeds 

from 4000 to 30 000 rpm. Agreement between theoretical and experi- 

mental speed sharing was good. The lowest speed ratio.(ratio of ball 

bearing inner-race speed to shaft speed) obtained was 0.67. This corre- 

sponds to an approximate reduction in DN value of 1/3. F o r  a ball bear- 

ing in a 3 million DN application, fatigue life would theoretically be im- 

proved by a factor as great as 8. 

INTRODUCTION 

Recent developments in gas turbine engines - such as higher thrust- 

to-weight ratios, advanced compressor design, high temperature 

materials, and increased power output - have resulted in a requirement 
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for  larger shaft diameters and higher main shaft bearing speeds (ref, I). 

Bearings in current production aircraft turbine engines operate in the range 

from 1 . 5  to 2 million DN (bearing bore in mm times shaft speed in rpm). 

Engine designers anticipate that during the next decade turbine bearing 

DN values will  have to increase to the range of 2.5 to 3 million. It is 

speculated that after 1980 turbine engine developments may require bearing 

DN values as high as 4 million. 

When ball bearings are operated at DN values above 1 .5  million, 

centrifugal forces produced by the balls can become significant. The 

resulting increase in Hertz stresses at the outer-race ball contacts can 

seriously shorten bearing fatigue life. The magnitude of the high-speed 

bearing problem is evident from the curves of figure 1. The solid curves 

of figure 1 illustrate the effect of DN on the fatigue life of a thrust loaded 

150-mm bore ball bearing at two values of thrust load. These curves are 

based on the analysis of references 2 and 3. An increase in speed from 

a DN of 1 .8  million to 4.2 million results in a reduction in life of 98 percent 

at 2000 pounds load and 96 percent at 4000 pounds load. These are typical 

thrust loads which such a bearing would carry in an aircraft  turbine engine. 

High centrifugal forces are largely responsible fo r  the drastic reduction 

in predicted fatigue life at high DN values. It is therefore logical to consider 

methods for reducing the factors that contribute to ball centrifugal loading. 

These are ball mass, orbital radius, and orbital speed. Theory indicates 

that reductions in ball mass can be quite effective in extending bearing 

fatigue life at high speeds. The dashed curves of figure 1, when compared 
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with the solid curves, illustrate the theoretical improvement in life with a 

50 percent reduction in ball weight. A t  3 million DN and 4000 pounds 

thrust load, for example, fatigue life is improved by a factor of 2.5. 

Both thin wall spherically hollow and drilled balls have been evaluated 

in short-time high speed bearing experiments (refs. 4-7). The drilled 

ball concept (refs. 6 and 7) shows particular promise for  high speed ap- 

plications 

in extended time fatigue tests , 

None of the hollow ball concepts has, however, been evaluated 

Since the orbital radius is more o r  less fixed by bearing design, the 

only remaining factor contributing to centrifugal loading is orbital speed. 

For a conventional bearing design this is primarily a function of shaft 

speed. The series hybrid bearing reduces the ball orbital speed by re- 

ducing the speed of the ball bearing inner ring to a fraction of the shaft 

speed. In effect the DN value that the bali bearing sees is reduced. In 

the series hybrid bearing, each component bearing carr ies  the full system 

load but the two bearings share  the speed. One element of the fluid-film 

bearing (fig. 2) rotates at shaft speed. The second element of the fluid- 

film bearing rotates with the inner race of the ball bearing at a speed less 

than shaft speed. The outer race  of the ball bearing is mounted in the 

stationary housing. The intermediate member rotates at a speed such that 

the torques of the fluid-film and ball bearings are equal. 

The potential benefits of the series-hybrid bearing are illustrated in 

figure 3. The curve f o r  the hollow ball bearing was calculated from the 

4000 pound curves in figure 1. The curve for  the series hybrid bearing was  

generated from the 4000 pound solid ball curve of figure 1 by comparing the 

life at each DN value with the life at a 30 percent lower DN. 
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At 3 million DN with 30-percent speed reduction the series-hybrid 

bearing improves life 3.2 times, and at 4 million DN the life improvement 

factor is 5.7. With hollow balls the life improvement factors at these DN 

values are approximately 2.5 and 4.2. The series-hybrid bearing is con- 

siderably more effective than hollow balls. Furthermore, both approaches 

could conceivably be utilized simultaneously to effect an even more dramatic 

life improvement. The series hybrid concept does introduce considerable 

mechanical complexity, but its potential for extreme speed applications 

makes it worthy of investigation. 

The object of this investigation was to analytically and experimentally 

evaluate the series-hybrid bearing concept. An analysis of a rotating, 

pressurized, compensated, incompressibly lubricated fluid film thrust 

bearing was made. Tests were performed with a series hybrid bearing 

which incorporated a 75-mm bore angular contact ball bearing having the 

fluid film bearing attached to its inner race. The magnitudes of speed 

reduction achieved at various loads and speeds were compared with 

t heore t ic a1 predict ions. 

Tests were conducted in a high-speed air turbine driven bearing test 

rig. Test conditions includes shaft speeds of 4000 to 30 000 rpm, bearing 

thrust loads from 100 to 300 pounds and a type I1 tester fluid as the lubri- 

cant. The rolling-element bearing was a 115-series ball bearing. These 

results were reported initially in references 8 and 9. 

APPARATUS AND TEST PROCEDURE 

The test apparatus is described fully in reference 8. A pneumatic 

cylinder loaded the bearing through an externally pressurized gas thrust 

bearing as shown in figure 2. The bearing torque was measured by an 

unbonded strain-gage force transducer connected to the periphery of the 

floating test bearing housing. The ball bearing outer-race temperature 
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was measured with a thermocouple embedded in a copper bead in the test 

bearing housing. The test bearing was  lubricated as shown in figure 2 

with a 0.10-inch-diameter jet guiding oil into the shaft. The shaft rotation 

pumped the oil to the fluid-film bearing. The oil leaving the fluid-film 

thrust bearing after liftoff flowed to the ball bearing. In addition, the ball 

bearing was lubricated with an air-oil mist. 

Test  Bearing 

Fluid-film bearing. - The fluid film bearing consisted of a centri- 

fugally pressurized flat face thrust bearing and a small  journal bearing 

to take any radial load that might be present. The analysis used to evaluate 

fluid-film thrust bearing designs is presented in the section Analysis. The 

computer program based on the analysis is given in reference 9. The 

analysis is for an orifice-compensated annular thrust bearing. A line feed 

and laminar conditions are assumed, and rotational effects are included. 

The lubricant supply pressure was taken as the pressure that could be de- 

veloped from centrifugal effects at the radius of the orifices. Because the 

fluid film bearing was centrifugally pressurized relative motion between 

its inner and outer members (fig. 2) did not take place until the rotative 

speed was  high enough to produce a supply pressure sufficient to separate 

the surfaces under the applied thrust load. The speed at which separation 

occurs and s l ip  ensues is termed the lift-off speed. 

After  the first data were taken, the outer member of the fluid-film 

bearing (fig. 2) was reduced in diameter from 3 . 3 5  to 2.80 inches in 

order to lower the running torque and increase the relative speed of the 

fluid-film bearing. The journal bearing was  also shortened and two small  

lubricant supply holes were provided for  the journal bearing. 
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Dimensions of the original and modified fluid film bearing designs are 

given in table I. 

Rolling- element bearing, - The rolling-element bearing portion of the 

series-hybrid bearing is a 115-series deep-groove ball bearing. One 

shoulder of the outer race  was relieved to make the bearing separable. 

The one-piece, machined, inner- race-located retainer was silver-plated 

bronze. Bearing specifications are given in reference 8. 

Test  Procedure 

The test shaft was  slowly brought up to speed less than 4000 rpm 

while system temperatures stabilized. When all temperatures stabilized 

(after about 90 min), conditions were set for the first data point at either 

4000 o r  5000 rpm. Data were subsequently taken as shaft speed was  

increased in 1000- to 2000-rpm increments up to 30 000 rpm. Conditions 

of temperature equilibrium were reached after about 10 to 20 minutes at 

each speed. Experiments were conducted at thrust loads from 100 to 

300 pounds and speeds from 4000 to 30 000 rpm, at a constant oil inlet 

temperature of 140' F 

ANALYSIS 

The bearing analyzed is shown in figure 4. It comprises a thrust 

bearing and two journal bearings at the inside and outside thrust bearing 

radii, The journal bearings enter into the analysis only as they contri- 

bute additional constant resistances to the throughflow of lubricant and as 

they add to the bearing torque. Their lengths may be set at zero when 

they are not present. A circle of orifices is at radius Rc. Alternatively, 
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the bearing may have capillary restrictors at radius Rc0 The number of 

orifices o r  capillaries is assumed la rge  enough to constitute a line source 

of lubricant. The thrust face clearance varies with radius in a stepwise 

manner as shown. The lubricant is supplied to the orificies at pressure 

ps; it leaves the bearing at the reference pressure p = 0. Symbols are 

defined in the Nomenclature. 

The starting point of the analysis is the Navier-Stokes equations for  

incompressible flow (ref. 10). The usual assumptions of laminar flow, 

rotational symmetry, constant pressure across  the film, no body forces 

acting on the fluid, negligible fluid inertia and small  radial velocity 

relative to circumferential velocity (see ref. 9) are made. (The latter 

are standard assumptions in lubrication work. See, for  example ref. 11, 

p. 68. ) With these assumptions, and after incorporating the continuity 

equation, the reduced Navier-Stokes -equations become, in cylindrical 

coordinates, 

' 2  dr az r 

A solution of equation (lb) is 

Z v 8  = ro2 - r (w2  - wl) - 
h 
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where z is measured from the lower thrust surface (fig. 4)p Equation (2) 

may be substituted into equation (la) and the result integrated twice in z. 

After the boundary conditions vr = 0 at z = 0 and vr = 0 at z = h are 

applied, the result is 

7 

Lurbicant Flow Rates 

The quantity of lubricant flowing radially at any radius r is found 

from 

Q = 277rlh vr dz 

Substituting equation (3) into equation (4) and integrating yield 

3 
Q=- -  - * + p r w o  

Trh 6 P  ( d r  ') 
where wo is defined by 

2 3 2 0 = 0 w + - ( w 2  - wl)  
O l 2  10 

(4) 

(5) 

The speed coo, which may be regarded as an average of w1 and w2' is 

used to calculate rotational effects. Equation (5) may now be integrgted 

with respect to r to find the relation between flow and pressure.  The 

clearance h has been assumed to vary in a stepwise manner. Thus, 
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integration over any interval of constant clearance is straightforward. 

For example, integrating from r = to r = R 5 R o  gives 
RPo 

2 2  - R ) w o  

Pressure  drop through the journal bearings is easily calculated from 

the expression for flow in a narrow slot  (ref. 11, p. 99). . For the outer 

journal bearing, neglecting the effect of eccentricity, 

With this, total lubricant flow through the bearing can now be given 

as that flowing inward from the orifices and that fldwing outward: 

2 2 2  - E  (Rc - Ro)wo 
pc 2 

1 Rpo 1 RO +- In - + - In - 
ROC: h i  Rc h; Rpo 

=0 

2 2 2  - (Rc - Ri)wo 
(9) 71 2 +- 

6 P  Li 1 Rc 1 Rpi +-In-- +-In- 
RiCf h: Rpi h: Ri 

The negative of Qi is taken because, at any radius, outward flow is de- 

fined as positive. 
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The total flow Q must now be matched to the flow through the re- 

strictors.  For  orifice restrictors,  this is (ref. 11, p. 103) 

Equation (10) may be combined with equation (9), and the pressure p, 

downstream of the restrictors solved for algebraically. The flow rate Q 

can then be found from equation (9). 

Bearing Loads 

The thrust bearing load is given by 

w = 2a sRo pr d r  
Ri 

The pressure p is given by equation (7) fo r  R 

and by similar expresskons.for other radii: ' These expressions. 

may be substituted into equation (11) and integrated to yield theload. 

Inner and outer journal' begrings ( f i g  4) may 'be used .tp provide 

a radial load capacity. These are assumed to be purely self-acting bear- 

5 r 5 Ro, 
PO 

ings For  small length- to-diameter ratios the load is adequately given 

by the short  bearing approximation. From reference 11 (p. 84), for  the 

inn e r bearing, 

where ei is the journal-bearing eccentricity ratio. 

A 
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Bearing Torque 

The velocity v8 varies linearly across the film (eq. (2)). Thus, 

thrust bearing torque is easily calculated. F o r  the annulus from r = Rc 

to r = R  PO’ 

Similar expressions apply to the other sections. Fo r  the inner journal 

bearing, neglecting the effect of eccentricity, the torque is 

2aRiLip 3 I u1 - u21 
Tji = 

‘i 

A similar expression applies to the outer journal bearing. Total torque 

is merely the sum of the various component torques: 

T =  T + T p o + T  +Ti  + T .  + T o .  (15) 
0 Pi 10 J1 

Though the preceding analysis is simple and straightforward, a con- 

siderable effort would be needed to calculate the large number of numeri- 

cal results needed in evaluating several bearing designs and operating 

conditions. To reduce this effort, a computer program was written. It 

is presented in reference 9. 

RESULTS 

Original Fluid Film Bearing Design 

Ball-bearing inner-race speed is plotted in figure 5 as a function of 

shaft speed for thrust loads of 100 and 300 pounds. F o r  each load, the 
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inner race  initially rotates at the shaft  speed. As shaft speed increases, 

a point is reached where the fluid-film bearing lifts off. These liftoff 

points are seen in figure 5 where the data indicate inner-race speed and 

shaft speed are no longer equal. 

A s  thrust load increases, the liftoff speed increases as shown in 

figure 6. In this figure, the speed ratio Ni/Ns is plotted against shaft 

speed (Ni is inner-race speed and Ns is shaft speed) for  four thrust 

loads. The trend of higher liftoff speed with higher thrust load is ex- 

pected since the load capacity of the fluid-film bearing depends on the 

lubricant supply pressure.  This pressure increases as the square of the 

shaft speed. Thus , for  higher thrust loads, greater  hydrostatic pressures 

(and thus higher shaft speeds) are required for liftoff. 

Also shown in figure 6 is the variation in speed ratio Ni/Ns as shaft 

speed increases beyond the liftoff range. The speed ratio drops rapidly 

after liftoff but in all cases reaches a minimum value and then begins 

to increase. Minimum speed ratios were in the range of 0.76 to 0.80. 

For example, with a shaft speed of 18 000 rpm, the inner-race speed is 

about 14 000 rpm. Or, in terms of speed sharing, the ball bearing is 

rotating at 14 000 rpm, and the effective fluid-film bearing speed is 

4000 rpm. This speed of 4000 rpm appears to be an upper limit for  this 

fluid-film bearing, concevably because of turbulence in the fluid film. 

Turbulence can increase the drag of the fluid-film bearing (refs. 12 and 13). 

In the tests at 200- and 300-pound thrust loads, the fluid-film bearing 

ceased to operate when the shaft speed reached 22 000 rpm. At this point, 

the ball-bearing inner-race speed increased to the shaft speed. This effect 
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was accompauied by an oscillation in bearing torque which indicated a 

possible critical speed of the shaft assembly. (This oscillation was  also 

noted at 22 000 rpm in later tests with a modified bearing.) After testing, 

the bearing was disassembled, and a slight scuffing of the jouTnal bearing 

surface was noted which could have been a result of this operating condi- 

tion e 

Modified Fluid Film Bearing Design 

The fluid-film bearing was modified in an attempt to reduce its torque- 

to-load- capacity ratio and thus to achieve more favorable speed 

The modification consisted of a smaller  diameter thrust bearing, a shorter 

journal bearing length, and lubricant feed holes for  the journal bearing. 

This modified bearing proved to be superior to the initial design in speed 

sharing capabilities when tested in the same  range of test conditions. The 

results are shown in figure 7. Ratios of ball-bearing inner-race speed to 

shaft speed as low as 0.67 were obtained, and the speed of the ball bearing 

was reduced nearly 6000 rpm below the shaft speed at one point. (With the 

original series-hybrid bearing, the maximum speed reduction was 4000 rpm. ) 

Liftoff speeds were higher with the modified bearing because of a 

smaller load-carrying area. Maximum speeds obtained, however, were 

greater,  with the modified bearing still functioning at 30 000 rpm and 

300 pounds thrust load (fig. 7). 

Torque results for  the modified bearing as a function of inner-race 

speed are shown in figure 8.  When the fluid-film bearing lifts off, an 

abrupt increase in torque occurs because the lubricant leaving the fluid- 

film thrust bearing also passes through the ball bearing. This increased 

flow through the ball bearing results in increased torque due to oil drag.. 
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Better speed sharing resulted with the modified fluid film bearing design 

because it exhibited lower torque at a given relative speed than the original 

design 

Comparison of The0 r eti c a1 and Experimental Results 

Figures 9 and 10 show the bearing inner-race speed plotted against 

shaft speed for  the original and modified bearings, respectively. The 

theoretical curves (from the analysis, and the computer program of ref. 9) 

were calculated from the measured bearing torque and an oil viscosity 

corresponding to the measured ball-bearing outer- race temperature. 

When the liftoff speed is reached, according to the analysis, the 

inner- race  speed drops abruptly. Inner-race speed varies little with 

applied load, but is sensitive to lubricant viscosity, The 300-pound curve 

lies below the 100-pound curve in figure 10 since the oil was hotter (hence, 

less viscous) during the 300-pound run. For  the experimental data in fig- 

u re  9, temperatures did not vary aa widely with applied load. A mean 

temperature was used in these calculations. 

Experimental liftoff speeds and inner- race speeds are higher than 

predicted by theory. Also, the experimental points indicate a nearly con- 

stant difference between shaft speed and inner-race speed, whereas the 

analysis shows the difference increasing with shaft speed Agreement 

between theory and experiment is better for the original series-hybrid 

bearing than for the modified bearing, though, as expected, inner- race  

speeds are lower for the modified bearing. Higher experimental thrust 

loads generally resulted in lower inner- race speeds showing the effect 

of higher temperatures on the fluid-film bearing. 
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Possible reasons for the disparity between analysis and experiment 

are the following: 

(1) The analysis assumes a line source of pressurized lubricant, 

whereas the actual bearing has only four orifices. 

(2) The fluid-film bearing may be cooler than the ball-bearing outer 

race. 

(3) There may be some turbulence in the fluid film at higher speeds. 

The highest Reynolds number, based on the clearance in the bearing 

recess, was  1240. Reference 14 gives a critical Reynolds number of 1000 

for thrust bearings. 

CONCLUSIONS 

The following results were obtained f rom the analytical- experimental 

evaluation of a series hybrid bearing: 

1. Reductions in ball bearing speed of up to 33 percent of shaft speed 

were obtained. This corresponds to a reduction in DN value of 1/3. 

2, Experimental values of speed ratio (ratio of ball bearing to  shaft 

speed) were greater than theoretical predictions 

mental from predicted speed ratios was greatest  at higher speeds. 

Deviation of experi- 

3. Experimental liftoff speeds increased with increased thrust load 

and were only slightly higher than theoretical predictions 

These results have several implications regarding improvements in 

ball-bearing fatigue life, A reduction in ball bearing speed of 33 percent 

in a 3 million DN application could result in a theoretical life improvement 

of 8. At higher DN values the life improvement factors would be even 

more dramatic. 
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The fluid-film bearing Lmits the ball bear,sg speed reduction, and 

thus the life improvement factor, because it is inherently a higher torque 

bearing than is a ball bearing. The basic design problem is to devise a 

fluid film bearing that has the lowest torque at a given load and speed con- 

sistent with reasonable lubricant flow requirements. An important ad- 

vantage of the series hybrid bearing is that its power loss  (neglecting the 

power required to supply the lubricant) will be somewhat less than that of 

the ball bearing operating at full shaft speed. 
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NOMENCLATURE 

orifice discharge coefficient 

radial clearance in inner journal bearing, in. 

radial clearance in outer journal bearing, in. 

orifice diameter, in, 

thrust bearing clearance, in. 

journal bearing length, in. 

speed, rpm 

number of restrictors 

pressure,  lb/in. 

lubricant flow rate, in. /sec 

radius, in. 

film rotation Reynolds number, Roh / p  

radial coordinate, in. 

bearing torque, in. -1b 

velocity, in. /sec 

bearing load, lb 

axial coordinate, in. 

journal bearing eccentricity ratio 

lubricant dynamic viscosity, lb- s ec/in e 

lubricant density, lb s e c  /in. 

angular velocity, rpm o r  rad/sec 

mean angular velocity, eq. (6), rpm o r  rad/sec 

2 

3 

P 

2 

2 4  
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Subscripts : 

C restrictor exit 

i inner, inner race 

j journal bearing 

0 outer 

P pocket 

r radial direction 

S supply shaft 

e c i r  cumf erential direction 

1 upper thrust surface 

2 lower thrust surface 
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TABLE I. - FLUID-'FILM BEARING SPECIFICATIONS 

Thrust bearing outside diameter , in 
Thrust bearing inside diameter, in. 
Outer recess diamter, in. 
Inner recess diameter, in. 
Recess depth, in, 
Number of orifices 
Orifice diameter, in. 
Orifi*ce locating diameter, in. 
Journal bearing diameter, in. 
Journal bearing diametral clearance, in. 
Journal bearing length, in. 

3 riginal 
design 

3.35 
1.75 
2.75 
1.75 

4 

2.4 
1.75 

e 009 

0 010 

0 002 
a 86 

Modified 
design 

2.80 
1.75 
2.60 
1.75 

4 

2.4 
1.75 

.009 

0 010 

002 
.61 



- Solid balls 
--- Hollow balls %-percent weight reduction 'F 
Thrust load, k- Ib(N) 

2.4 3.0 3.6 4.2 
102 

1.8 
DN, million 

Figure 1. - Theoretical fatigue life of a thrust-loaded 150-mm bore 
ball bearing with solid and with !%-percent hollow balls (based on 
analysis of refs. 2 and 3). 
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Figure 5. - Inner-race speed as funct ion of shaft speed for or ig inal  
series -hybrid bearing. 
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Figure 10. - Comparison of theoretical and experimental speed sharing 
results for modified series-hybrid bearing. 
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